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The Use of ASN.1 and XDR
for Data Representation
in Real-Time Distributed Systems

Abstract: This report provides an overview of two standards that are used for
data specification and representation in distributed systems. The standards con-
sidered are the Abstract Syntax Notation One (ASN.1) and the external data rep-
resentation (XDR). Standards for data representation are appropriate for the de-
velopment of real-time distributed systems, particularly loosely coupled, heteroge-
neous systems. The report presents an example of the use of each standard.
Several performance metrics are also introduced that are suitable for comparing
the space and time costs of using the different standards. Several issues are dis-
cussed that are appropriate to a system designer. An Ada implementation of
ASN.1 encode and decode routines for floating point types is included in an ap-
pendix.

1. Introduction

Hard real-time systems are characterized by the presence of timing deadlines that must be
met to assure system correctness. In the case of a distributed system, the deadlines are
often characterized as end-to-end deadlines that involve multiple application programs. In
the process associated with an end-to-end deadline, a sending application encodes data in
some structure that a receiving application is able to decode. In the case of hard deadlines,
performance of a system in regard to data manipulation is an important issue, particularly
when the system can be composed of heterogeneous machines.

This report examines two well-known standards for data specification and representation,
namely

e The Abstract Syntax Notation One (ASN.1). ISO/IEC 8824 [2] defines the speci-
fication of ASN.1, while ISO/IEC 8825 [3] defines the basic encoding rules
(BER) that are used in the representation of data.

e The external data representation (XDR), defined in reference [4].

The orientation of this report is more toward the methods used to represent as opposed to
specify data. For our purposes, data representation involves the encoding and decoding of
data, usually for transfer between system elements. Data specification involves the use of
some type of abstract syntax to describe data. While these are clearly related, we are con-
cerned more with the manner in which data is encoded and decoded by elements of a distri-
buted system.

This document is organized as follows: Chapter 2 presents an overview of the problems
addressed. Chapter 3 provides an overview of the ASN.1 basic encoding rules. The use of
the external data representation is considered in Chapter 4. A comparison of these two
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approaches is then discussed in Chapter 5, which also contains a discussion of issues re-
lated to the two standards. A brief summary of the report appears in Chapter 7. Throughout
this report, we use a representative example, that of a track update message, to illustrate
the various possible encodings. Appendices A and B contain the BNF specifications for
ASN.1 and XDR, respectively. Appendix C contains an example, written in Ada, of ASN.1
encode and decode routines.

The work reported in this docume -t was performed by the Open Systems Architecture Proj-
ect at the Software Engineering !astitute (SEI). The SEl is a federally funded research and
development center operated by Carnegie Mellon University under contract to the Depart-
ment of Defense. This work was supported in part by the Navy Next Generation Computer
Resources Program.
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2. Overview

2.1. Problem Considered

A typical communication mechanism used in distributed systems is a remote procedure call
(RPC). This is illustrated in Figure 2-1. The client makes a request (a call) to a server. Part
of the request is an indication of the procedure to be called. The server performs the re-
quested operation and then returns a response to the client, completing the procedure call.
Note that RPC may be implemented either synchronously or asynchronously.

Request

Server

Response

Figure 2-1: Model of a Remote Procedure Call

The data exchanged in an RPC consists of two parts, as indicated in Figure 2-2. The firstis
a protocol-specific component that conveys information about the protocol being used. For
example, in the case of the Sun RPC [5] the protocol component contains

¢ An identifier that uniquely associates calls and responses.

A body that can be either a call body or a reply body. In the case of a call, for
example, the call body may contain the RPC version number, remote program

number, reinote program version number, remote procedure number, and au-
thentication information.

Protocol Component Data Component

Figure 2-2: Encapsulation of Protocol Information

The second component of the information transferred is a data component that contains the
information to be passed in the remote procedure call. In the case of the Sun RPC [5] and
the Versatile Message Transaction Protocol (VMTP) [6], the data component is represented
using the XDR standard [4].

CMU/SE93-TR-10 3



There are several performance issues to consider in the use of a RFC model. Of concem in
this report is the mechanism that is used to encode (and decode) the data component of the
RPC. Application programs require flexible representations that are also efficient in their en-
codings. Frequently, however, greater flexibility of data representations implies a more
complicated representation, which in turn requires more complicated encode (and decode)
routines. These more complicated routines are larger and require more processing time to
execute. As we shall see, the notions of flexibility and efficiency are not necessarily com-
patible.

2.2. Role of Standards

There is a current trend toward the increased use of standards in DoD real-time systems
developments. |t is hoped that the use of standards will increase system interoperability.
When a standard contains more attributes than are believed necessary for the real-time
domain, a profile of the standard can be developed. For example, an embedded system
may not need all the functionality of a standard for a general purpose operating system.

Dkata representation standards such as ASN.1/BER and XDR, which are considered in this
report, are appealing in that they lend themseives to automatic code generation. For ex-
ample, one may create a data specification and then use a tool to automatically generate
the routines to encode and decode the data. The existence of such a tool would eliminate
the need for hand-coding the encode and decode operations on data structures.

2.3. An Example

A typical requirement of a real-time system is the need to perform track management.! We
will consider the example of a track update message that can be exchanged by components
of a distributed system. This example will be used throughout this report to illustrate the use
of different data representation and encoding schemes.

2.3.1. Specification

A track update message can be transmitted when information about some track changes, or
on a periodic basis. Typically, this message would contain the following information:

» Message length: the number of words in the message (we assume a 16-bit
word).

» Message ID: a unique identifier for the class of the message.

o Track index: a unique identifier of the track being reported.

» Positional information: the location of the track in some particular coordinate
system.

1A track represents the set of information about an object in the external environment, such as a radar report
of an aircraft.
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e Velocity information: the velocity components of the track. Note that these
components may be reported in a different coordinate system than that used to
specify the track position.

e Track category: an indication of the type of track, such as an air or surface
track.

e Maneuver indicator: an indication that the track is maneuvering. This informa-
tion is used in certain algorithms that estimate the state of the track.

o Track quality: a measure of the quality of the position and velocity information
contained in the message.

e Sensor: an indication of the sensor that is reporting the information. Typically,
many sensors may be available, and it is necessary to know which particular
sensor is reporting the data.

¢ Clock: the time at which the track data was collected.

In reality, typical systems may report more information than that listed above. For our pur-
poses, however, the above list captures the essence of the data and will serve to illustrate
the issues associated with data representation. Although presented in the context of a mes-
sao9 ii.". rchange, the model may easily be extended to an RPC model where the requested
funcuon s 10 update a remote track database.

2.3.2. Representation

The information that appears in the track update message is formatted in a predefined man-
ner as specified in some interface requirements specification (IRS). The IRS specifies not
only the format of the data, but the permitted range of values of the message components
and other information about the communication protocol that is used between systems that
exchange such data.

A typical representation of a track update message appears in Figure 2-3. The following are
to be noted about the data representation:

e The number of words (NW) is a constant, having the value 12 (decimal), and is
contained in one byte.

e The message ID (MID) is a constant, having the value 202 (octal), and is con-
tained in one byte.

e The track index is represented as an unsigned integer having range 1 to 7777
(octal).

e The X-Position (X) and Y-Position (Y) are fixed-point types with the assumed
(binary) decimal point located between bits 6 and 7 (we assume bits are num-
vered from right to left starting with 0). The units for these quantities are in data

miles.2 and the range is [-255 % 255 %i—l _

e The height is a fixed-point type with the assumed (binary) decimal place be-

tween bits 7 and 8. The height is reported in units of data miles and is in the
range [0, 255 ;.55§1.

20ne data mile is defined to be 6000 feet.
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WORD
0 NW MID
1 TRACK INDEX
2 X
3 Y
4 HEIGHT
5 X-VELOCITY
6 Y-VELOCITY
7 Z-VELOCITY
8 ;T? "2 TRACK QUALITY
9 |———| SENSORSOURCE
10 CLOCK (Upper)
11 CLOCK (Lower)

Figure 2-3: Structure of Track Update Message

e The velocity data is a fixed-point type with the assumed (binary) decimal place
between bits 12 and 13. Velocit}' data is reported in units of data miles per sec-
ond and is within the range [0, :1—:1 .

» The track category (CAT) is a Boolean; if TRUE, it indicates a surface track;
otherwise, it indicates an air track.

» The maneuver (MVR) is represented as a Boolean; if TRUE, it indicates that the
track is maneuvering.

e The track quality occupies one byte and is represented by an integer in the
range from 0 to 100 with larger values denoting higher track qualities.

o The sensor source is 10 bits wide, with each bit indicating a particular sensor.

For example, if bit 6 is set, the track data is being reported by sensor 6, which
we will [abel as SENSOR_G.

e The clock is an unsigned integer value of the time that the data was collected.

CMU/SEIF93-TR-10




The time is reported in milliseconds in the range [0, 37777777777] octal. Note
that the high-order bit is used for data, not a sign.

There are two points about the representation of the track update message that are worth
noting. First, the representation seeks to minimize the amount of storage; for example, the
track category and maneuver request bits are packed in a byte and the sensor is
represented as an array of type Boolean, which is also packed. Second, note the number of
fixed-point types that are contained in the message.

The packing of data and the use of fixed-point types are typical of many existing systems.
This is in part due to concern over buffer management (perhaps at the expense of additional
processing time to decode and encode a message). The prevalence of fixed-point types is
frequently driven by hardware considerations; that is, data is presented directly from a
hardware device.

Finally, let us consider an instance of a track update message. Assume that track index 165
(decimal) is reported at a position given by (100.5, 67.75, 2.00) data miles with correspond-
ing velocity components (0.50, 2.875, 0.0) in units of data miles per second. Assume that
the track is an air track that is maneuvering, and that the track quality is 90 (decimal). Also
assume that the track is reported by Sensor_B at a clock time of 496 (decimal) milliseconds.
In this case, the actual bit stream for the track update message (in hex) would appear as

0C8200A5324021700200100058000000405A0002000001F0

The total length of the track update message, illustrated above, is 24 bytes. Of these, only
12 bits are not used in the representation of the message.

"CMU/SEI-93-TR-10 7
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3. ASN.1 Basic Encoding Rules

3.1. Overview

The Abstract Syntax Notation One (ASN.1) is an international standard for the specification
and representation of data. It is well known and used in other international standards. Be-
cause it is an international standard, it is a natural candidate to consider for data specifi-
cation and representation.

An ASN.1 specification is encapsulated within a module. A module can include an import
and export list to indicate references to types and objects declared in other modules. A mod-
ule can also contain definitions that can represent type declarations or value declarations.
Finally, an ASN.1 module can contain macro declarations. A macro declaration can be used
to change the syntax of the ASN.1 specification language when an ASN.1 specification is
being compiled. Although unique in concept, use of the macro facility complicates the de-
velopment of a compiler for ASN.1 specifications.3

It is important to note that ASN.1 can be used to produce very general specifications and
has significant expressive capabilities. In this report we will be concermned with only a subset
of the ASN.1 specification to illustrate its applicability to the real-time domain, which is
predominated by certain data types. We will also be concerned with the ASN.1 specification
mechanism only to the extent that it is used in the example of the track update message.
However, the ASN.1 specification grammar appears in Appendix A in a BNF form.

3.2. Encoding Scheme

The mechanism by which data is represented in ASN.1 is defined as a set of basic encoding
rules (BER), specified in ISO/IEC 8825 [3]. These rules are used by the presentation service
pr~ider in the ISO model. Each encoding consists of the following three items:

1. identifier
2. lLength
3. Value

3Rose discusses some issues regarding the mac. o facility [8]. This reference also contains a critical examina-
tion of ASN.1 in general.

CMU/SEI-93-TR-10 9




The structure of an encoding is presented in Figure 3-1. The identifier is encoded in one
octet and contains the following fields:

o Class: ASN.1 specifies 4 classes of encodings, namely, universal, application-
wide, context-specific, and private, which are encoded in the first 2 bits of the
identifier using the values 0, 1, 2, and 3, respectively. A universal tag is used to
define an application-independent data type that is of general use. An
application-wide tag is used to define an application-oriented data type that
needs to be distinguished from other data types. A context-specific tag is used
to distinguish among alternatives of a data type, such as members of a set.
Finally, a private tag is used to define data types that are used in a limited
domain.

e Form: An encoding may be primitive or constructed, depending upon the data
type. For example, an integer is encoded as a primitive, while a sequence is
encoded in a constructed form, meaning that it is an encapsulation of encod-
ings. The encoding method, denoted by PC in Figure 3-1, is contained in one
bit, with primitive and constructed being denoted by 0 and 1 respectively.

¢ Tag: The tag number is an indication of the data type.

C g Tag Length ... Contents ...

Figure 3-1: Structure of an ASN.1 Encoding

The length is contained in one or more octets and denotes the number of octets of data
present. In this report we will be concerned with a definite torm of length which is one that is
encoded in a single octet. Other forms are possible, including a specification of an indefinite
form where the length of the data is determined from special characters contained in the
data.

The value of an encoding, 2" referred to as the contents, contains the actual data. For
certain encodings, there may not be any values present.

3.3. Components

In discussing the encodings used in ASN.1, we will partition the ASN.1 data types into com-
ponents consisting of (i) primitive, (ii) constructed, and (iii) dual encodings. These are dis-
cussed in the following subsections.

10 CMU/SEI-93-TR-10



3.3.1. Primitive Components

A primitive component is one that is encoded as a single entity. The integer, Boolean,
enumerated, real, and null are included within this class and are discussed below.

3.3.1.1. Integer

An integer is encoded using one or more contents bytes, represented as a two’s comple-
ment binary number. The encoding is such that the contents field is encoded using the smal-
lest number of bytes. The universal class tag for an integer is 2.

3.3.1.2. Boolean

The contents field of a Boolean is encoded using one byte. The value FALSE is encoded as
zero, and TRUE is encoded as any non-zero value. The universal class tag for a Boolean is
1.

3.3.1.3. Enumerated

The encoding of an enumerated type is the same as that of the integer value that is associ-
ated with the type. The universal class tag for an enumerated type is 10.

3.3.1.4. Real

The representation of a real value may include one of the following: (i) the value zero, (ii) a
binary representation of a real value, (jii) a character-based decimal representation of a real
number, and (iv) certain special real values. The universal class tag for a real type is 9.

The value 0.0 is encoded by setting the length field to 0. That is, there are no contents
octets.

If bit 8 of the first contents byte has the value 1, the encoding is that of a binary represen-
tation of a real number. A real value is represented in the following form:

SN2F BE

where S is the sign, N is a number related to the mantissa, F is a scale factor in the range
[0, 4), B is the base, and E is the exponent. The elements of the encoding are based on the
following:

 The sign is contained in bit 7 of the first contents octet. The values positive and
negative are represented by 0 and 1, respectively.

¢ The base is contained in bits 6 and 5 of the first contents octet and can have
the values 0, 1, or 2, denoting, respectively, base 2, 8, or 16.

e The scale factor F is contained in bits 4 and 3 of the first contents octet and
directly represent a value i the range [0, 4).

e The format of the exponent is indicated in bits 2 and 1 of the first contents octet
and has the following interpretation:
« If bits 2 and 1 have the value 00, then the second contents octet contains
the value of the exponent.

« If bits 2 and 1 have the value 01, then the second and third contents octet
contains the value of the exponent.

"CMU/SEF93-TR-10 11




« If bits 2 and 1 have the value 10, then the second, third and fourth con-
tents octets contains the value of the exponent.

* If bits 2 and 1 have the value 11, then the second octet specifies the
number of octets that are used for the exponent. The actual value of the
exponent appears in the following number of octets.

* In all cases, the exponent is stored as a two's complement binary num-
ber.

e The value of N is encoded as a binary integer in the remaining contents octets.

If bits 8 and 7 of the first contents byte have the value "00," the encoding is that of a
character-based decimal encoding. This is similar to an ASCII representation with the inter-
pretation of the remainder of the encoding being specified by certain international standards.

If bits 8 and 7 of the first contents byte contains the value "01,” a special real value is
present. The two values defined by the standard are plus and minus infinity, encoded as the
bitstrings 01000000 and 01000001 respectively. When a special real value is present, there
will be only one contents byte. Other possible encodings are reserved for future use.

it may help to clarify matters to consider an example of an encoding of a real type. Con-
sider, for example, the interpretation of the hex string "090680E60ADF0A8B." The inter-
pretation of this is illustrated in Figure 3-2.

T L E N
losps|so|esoAL Foass

1:0:00:00:00
XSB F Y

Figure 3-2: Example of a Real Type in ASN.1

The following are to be noted about the interpretation:

» The first byte contains the tag T, which in this case is 9, representing a real
type.
e The second byte contains the length L.
. ;l’he third byte contains the first byte of the contents and is interpreted as fol-
ows:
* The first bit (bit 8) indicates that the real value is encoded in binary.
* Bit 7 indicates that the sign of the number is positive.
* Bits 6 and 5 represent the base B. The value of zero indicates base 2.
* Bits 4 and 3 contain the value of the scale factor F, which is 0.

12 CMU/SEL93-TR-10




* Bits 2 and 1 indicate that the exponent occupies one byte of storage.

o The value contained in byte 4 denotes the exponent E; in this case, the value is
-26.

¢ The last four bytes of the encoding contain the value of N.

When the value of N is converted to decimal and muitiplied by the factor of 2-26, the resuit is
the value of e, the base of natural logarithms.

It is important to note that there are multiple valid BER encodings for a real number. For
example, the value of e as discussed above couid aiso be represented by the hex string
*0906817FE9ADF84D." In this case, the header indicates that the exponent is represented
in two octets, with the remaining three octets representing the mantissa.

The encoding specified for a real type by ASN.1 does not relate to any specific hardware,
nor is the encoding based on any other standard such as the |IEEE Standard for floating
point numbers [1]. However, it is stated in ISO/NIEC 8825 [3] that the ASN.1 representation
was chosen to be easily converted to and from other formats. See Appendix C.

3.3.1.5. Null

An object of the null type is encoded such that the length field is 0 and there is no contents
field present. The universal class tag for a null type is 5.

3.3.2. Constructed Components

A constructed encoding is one in which the encoding comprises one or more data values.
Such encodings are used for structures and records, for example.

3.3.2.1. Sequence

ASN.1 provides for specifying a sequence or sequence-of data types. The encoding encap-
sulates the encodings of the component data types. In the case of a sequence, the encod-
ing must appear in the same order as defined in the specification, but the sequence can
consist of many different data types. For a sequence-of, the order must also be preserved,
but all components of a sequence-of must be of the same data type. The universal class
tag for a sequence or sequence-of is 16.

3.3.2.2. Set

Similar to a sequence, ASN.1 provides for a set and set-of that represent an unordered col-
lection of objects. The encoding for the elements of the set can be chosen at will by the
encoder. Also, as with the sequence and sequence-of, a set can consist of components of
many different types, while a set-of consists only of components of the same type. The
universal class tag for a set or set-of will be 17.

"CMU/SEI93-TR-10 13




3.3.3. Dual Encoded Types
Certain of the ASN.1 types can be encoded using either a primitive or constructed form.
These are discussed below.

3.3.3.1. Bit String
A bit string is encoded as a sequence of zero, one, or more octets of data. The universal
class tag for a bit string type is 3.

3.3.3.2. Octet String
An octet string represents zero, one, or mode octets of data. The universal class tag for an
octet string type is 4.

3.3.4. Additional Points

The preceding has covered the basic components of ASN.1 types and associated basic en-
coding rules. It is to be noted that ASN.1 includes additional items that may be useful to a
designer. For example, one can specify objects of generalized and universal time (although
they are encoded as character strings). ASN.1 aiso includes subtypes and a macro facility
that is quite powerful; for example, one can extend the syntax of ASN.1. For further discus-
sion of the above items the reader is referred to ISO/IEC 8824 [2], ISO/NEC 8825 [3], and
Steedman’s ASN.1: The Tutorial and Reference [9).

3.4. Example

The development of the ASN.1 specification is fairly straightforward. Thus, in reference to
Figure 2-3, we note the following:

o The track update message is encapsulated in a module called track messages.
The use of a module specification in ASN.1 allows common data types to be
grouped together. In addition, modules can export, import, and reference speci-
fications defined in other modules; this is an attractive feature of ASN.1.

* The message itself is represented as a sequence. This implies that the encod-
ing of the message will be the ordered encodings of the message components.

» The number of words, message type, track index, track quality, and the value of
the clock are encoded as integers.

¢ The track category and maneuver indicator are encoded as Boolean types.

o The sensor type is specified as an enumerated type with the enumerated
values appearing in the specification.

» The position and velocity data is represented as a string of octets. This choice
is made because ASN.1 does not provide for the specification of a fixed-point
type. This implies that a tool to decode the message would have to perform
special processing for the position and velocity data.

The ASN.1 specification is presented in Figure 3-3.
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SEQUENCE {

NUMBER_WORDS INTEGER (1 .. 32767),
MESSAGE_TYPE INTEGER (1 .. 32767),
TRACK_INDEX INTEGER (1 .. 511),
POSITION_AND_VELOCITY DATA OCTET STRING (SIZE (12)),
TRACK_CATEGORY BOOLEAN,
MANUEVER_INDICATOR BOOLEAN,

TRACK QUALITY INTEGER (0 .. 100),
SENSOR ENUMERATED

{SENSOR A = 1, SENSOR B = 2,
SENSOR C = 4, SENSOR D = 8,
SENSOR E = 16, SENSOR F = 32,
SENSOR G = 64, SENSOR H = 128,
SENSOR I = 256, SENSOR J = 512 },
CLOCK INTEGER
}

Figure 3-3: ASN.1 Specification of Track Update Message

In terms of the values specified in Section 2.3.2, the ASN.1 encoding of the track update

message would appear as follows:
301r020C028202A50410324021700201000580000000010001FF
025A0A020201F0

The total length of the message in the ASN.1 BER encoding is 33 bytes. The representation
discussed in Section 2.3 required a total of 24 bytes.
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4. External Data Representation

4.1. Overview

The external data representation (XDR) is a standard developed by Sun Microsystems for
the description of data [4]. This standard is used in the definition of Sun RPC [5] as well as
the Versatile Message Transaction Protocol (VMTP), defined by Cheriton [6].

Some of the characteristics of XDR include the following:

e A data representation carries no information about the data type. It is argued
that receivers know what data types are expected and that including such infor-
mation is not of particular use.

¢ The data encoding is assumed to be a big endian format. This format is used
on IBM and Motorola machines, but not, for example, by the VAX family, which
uses little endian.

e XDR assumes that all data are encoded as a multiple of four bytes. This
means, for example, that a Boolean object will be represented in terms of 32
bits.

Ovur interest is more in the data representation aspect of XDR. Appendix B contains a BNF
specification of the language associated with XDR. In the following subsections, we present
the components of the XDR representation.

4.2. Components

4.2.1. Integer

An integer is represented as a 32-bit unit in the range [-2147483648, 2147483647). The
integer is represented in two's complement notation. XDR also supports an unsigned in-
teger with values in the range [0, 4294967295]. In the latter case, the high-order bit is inter-
preted as data, not a sign bit.

XDR also supports a hyper integer and an unsigned hyper integer type. These are exten-
sions of the integer and unsigned integer types, but they occupy eight bytes as opposed to
four.

4.2.2. Boolean

A Boolean is represented with the value TRUE as 1, and FALSE is represented as 0. In
each case, the object assumes 4 bytes.
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4.2.3. Enumerated
XDR supports enumerated types; an example of the syntax is as follows:

enum { RED = 2, BLUE = 12, GREEN = 15 } colors:;

The representation of an enumerated type is identical to that of an integer type.

4.2.4. Floating Point
The representation of a floating point type is that specified by IEEE 745-1985 [1] for normal-

ized floating point numbers. The representation includes the sign, exponent, and fraction,
described as follows:

» The sign of the number is represented as one bit, with the values 0 and 1
denoting positive and negative numbers, respectively.

s The exponent is represented in base 2 with a bias of 127. A total of 8 bits are
used to store the exponent.

« The fraction is represented in base 2 and is stored in 23 bits.

The resuit of the above is that a (single precision) floating point number is described as:
(~)**8S * 2*% (Exponent - 127) * 1.Fraction

The IEEE standard also describes special floating point types that may be included as part
of an XDR specification. Examples of this include signed zero and signed infinity (to repre-
sent overflow). XDR also provides for a specification of a double precision floating point
type that is an extension of the single precision floating point type, described above. The
double precision floating point is also represented according to the IEEE standard [1].4

4.2.5. Opaque Data

Opaque data is defined in XDR as uninterpreted data that is passed between machines. An
XDR specification may describe either fixed-length or variable-length opaque data. In each
case, the data is represented as a multiple of four bytes with additional zero-byte padding as
needed.

An opaque data specification can be used to describe data that will be processed by the
data rather than the presentation services. For example, a file can be encoded as opaque
data indicating that no operation is performed on the data by an automatically generated
tool. In this sense, opaque data can be used to hide the internals of the data representation.

4The IEEE floating point standard [1], also specifies extended floating point types. These are not included in
the XDR spaecification.
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4.2.6. String

A string is represented in terms of unsigned integers and assumes the ASCI| character set.
The first 4 bytes of the representation define the length of the string. A length declaration
may be omitted, in which case the maximum length of 2**32 -1 bytes is assumed. The data
follows the length specification and must be a multiple of 4 bytes.

4.2.7. Arrays

A group of homogeneous elements can be encoded in XDR as an array. The specification
provides for both fixed-length and variable-length encodings. In the latter case, the length is
included as the first four bytes of the representation, encoded as an unsigned integer.

4.2.8. Structure

A structure declaration in XDR is based on that defined in the C programming language and
has the syntax:

struct {
component-1;
component-2;

component-n;
} structure-name;

Each component of the structure is encoded in the order in which it is declared. The size of
each component must be a multiple of four bytes, although each component may have dif-
ferent sizes.

4.2.9. Discriminated Union

XDR permits a specification of a discriminated type, which is called a discrirminated union.
An example of a discriminated union appears below:

enum { XTP = 1, OSI-CONNECTIONLESS = 2 }
protocol;

union switch (PROTOCOL)
{

case XTP:
/* XTP protocol data specification */
case OSI-CONNECTIONLESS:
/* Connectionless protocol data specification */

The enumerated type specifies two different protocols, namely XTP and OSI Connection-
less, along with the particular values of each instance. Following this are the specifications
for each particular protocol instance.

The representation of a discriminated union consists of two parts. First, the discriminant is
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encoded in four bytes. The second part of the encoding is the data for the specified dis-
criminant value.

4.2.10. Vold

A void is a zero-byte quantity that can be used in XDR specifications. A void specification is
useful for operations that do not require any data as input or output, for example. It can also
be used to specify a null branch of a discriminated union.

4.2.11. Additional Points

The XDR specification also allows for the specification of constants, optional data, and iden-
tifiers used for declaring other data. These are discussed in [4].

4.3. Example

We now consider the XDR specification for the track update message, introduced in Section
2.3. The message will be represented as a structure whose components are the elements
in the track update message. The XDR specification is presented in Figure 4-1.

struct {

int NUMBER _WORDS;

int MESSAGE_TYPE;

int TRACK_INDEX;

opaque POSITION AND VELOCITY_DATA [12];

bool  TRACK _CATEGORY;

bool MANUEVER_INDICATOR;

int TRACK QUALITY;

enum (SENSOR A = 1, SENSOR B = 2, SENSOR C = 4,
SENSOR D = 8, SENSOR E = 16, SENSOR F = 32,
SENSOR G = 64, SENSOR H = 128, SENSOR I = 256,
SENSOR_J = 512 } SENSOR;

unsigned int CLOCK;

} TRACK UPDATE MESSAGE;

Figure 4-1: XDR Specification of Track Update Message

The development of the XDR specification is fairly straightforward, for example:
e The number of words in the message, message type, track index, and track
quality are represented as integers.
e The track category and maneuver indication are represented as Boolean.

) ;l:hg sensor type is represented as an enumerated type with each sensor identi-
ied.

e The value of the clock is represented as an unsigned integer.

There is, however, one issue in the use of XDR to specify the track update message. Sev-
eral of the quantities in the message are defined as fixed-point types, although XDR does
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not provide such a spacification. We could have represented these as some other type,
such as an integer, but instead, chose to represent the fixed-point types in terms of opaque
data. Thus, as shown in Figure 4-1, the position and velocity data is simply declared as an
array of length 12 of opaque data. Recall, the use of opaque data hides the internal repre-
sentation of the data. In the present case, it would not be possible, for example, for an
automated tool to encode or decode opaque data.5

In terms of the parameters given in Section 2.3.2, the XDR-encoded track update message
would appear as follows:

0000000C00000082000000A5324021700200100058000000
00000000000000021000000AA00000002000001F0

The total length of the message, in the XDR form, is seen to be 44 bytes. Recall that the
storage required for the track update message, discussed in Section 2.3, only required a
total of 24 bytes.

SStrictly speaking, one could modify a tool to handle the fixed-point types. However, this is tantamount to
extending the definition of the XDR specitication,
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5. Comparison of Approaches

5.1. Qualitative

A qualitative comparison of ASN.1 and XDR can be made based on the preceding as well
as the standards definitions contained in ISO/IEC 8824 [2], ISO/IEC 8825 [3), and the XDR
Standard [4]. The following points are relevant:

e The specification of ASN.1 is more expressive than that of XDR. This is
achieved, in part, through the use of modules, which allows for the application
or modern software engineering practices. In addition, the presence of subtyp-
ing multiple class tags also provides general capabilities to an application.
Also, the macro capability of ASN.1 permits one to genere® ew specifications;
in fact, one can redefine the syntax of ASN.1 through this capability.

¢ The data specification and representation capabilities of ASN.1 are more gen-
eral than that of the XDR standard. The encoding of data in minimal length for-

~ mats, such as integer and Boolean types, conserves buffer space and may
have implications for network bandwidth allocation. It was noted in the text that
the real type declared by ASN.1 is not suited to any particular hardware repre-
sentation, and this further illustrates the generality of the ASN.1 approach.

Of course, an application could pay a significant price for the generality contained in the
ASN.1 specification and encoding standards. XDR maps all data onto 32-bit aligned bound-
aries, and employs current standards for floating point representation, such as the IEE float-
ing point standard [1]. Clearly, XDR is oriented toward systems in widespread use today and
seeks to achieve an efficient data representation.

Many factors are involved in a decision concerning the use of a data specification and repre-
sentation standard. One concem in the real-time domain, where end-to-end deadlines are
important, is that of performance. In the following section, we present some discussion of
quantitative measures to compare ASN.1 and XDR.

5.2. Quantitative

It is desirable to have quantitative metrics to compare ASN.1 and XDR. Such metrics can
help application designers in the selection of a data specification and representation stan-
dard. In the following two sections we present two simple metrics regarding buffer sizes and
processing times.

5.2.1. Buffer Sizes

Given a set of data to be encoded according to some specification, one concern is the
amount of storage required for the resuiting data. The storage required is important be-
cause it contributes to the bandwidth required to transmit the data. In addition, a greater
amount of storage requires more data movement among components (for example, back-
planes and protocol chip sets).
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One applicable mefric is the ratio of buffer sizes for two representations. Let S(encoding;)
denote the required buffer size to encode data according to standard i. We then consider
the ratio:

i S(encoding;)
SGp= S(encoding)-)

In relation to the example considered in the text for the track update message, let S(raw)
denote the size of the data as specified in Figure 2-3. Then, we have:

S(ASNT1, raw) = 33/24 = 1.4,

S(XDR, raw) = 44/24 = 1.8,
and

S(XDR, ASN1) = 44/33 = 1.3.

In the case of the track update message, the use of the XDR representation nearty doubles
the size of the buffer required to store the message.

5.2.2. Processing Times
A second appropriate metric concerns the amount of time to encode and decode data. Let
T(i; k, A) denote the amount of time to perform operation A (encode or decode) on an object
of type k according to data representation standard i. We then define
. . = TG k, L)
TG, 5 k, A.) m

to be the ratio of times to perform operation A on an object of type k for standards i and j.

It is not our intent here to perform a detailed investigation of T(i, j; k, A) because such resuits
are influenced by:

» Design method (automated or hand-coded, for example).
¢ Implementation language.
o Target machine (underlying instruction set architecture).

To illustrate an application of the encode times, consider the case of an integer such that its
value can be represented in 32 bits. An estimate of T, expressed in terms of number of
machine instructions, would give

T(XDR,; integer; A) = 2.

In other words, a 4-byte integer could be encoded or decoded in two instructions. This es-
timate assumes one instruction to fix a pointer at the address and the second instruction to
move the 32 data bits. Recall that the XDR specification requires boundary alignment of 4
bytes on each data type.
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A corresponding estimate for the case of ASN.1 would be roughly
T(ASN.1; integer; A) = 7,

where the majority of the instructions are used to extract (and verify) tag and length infor-
mation. The preceding indicates that decoding a 32-bit integer requires about 3 times as
many instructions in ASN.1 than in XDR. In the case of a floating point value exchanged
among machines that conform to the XDR standard (that is, that employ the IEEE floating
point standard representation [1]), in XDR the data could be encoded in 2 instructions. An
estimate for ASN.1/BER encode and decode routines appears in Appendix C. There, it is
illustrated that the encode and decode operations, using ASN.1 BER, are considerably more
expensive than when done in XDR.

The inclusion of tag information in the ASN.1 encoding must be accounted for in any perfor-
mance metric to encode or decode data of a particular type. To some applications, this
could be viewed as unnecessary overhead.

5.2.3. Space and Time Tradeoffs

It is possible to combine the buffer size and processing time metrics, resulting in a
composite metric. Such a metric would convey, in a simple manner, the two metrics intro-
duced above. To this end, define

8§’ = S(i. j),
and
T =T( j k A).

The composite metric is obtained by displaying data in the S'-T' plane. An example of this is
presented in Figure 5-1 where i and j correspond to ASN.1 and XDR, respectively. The
point labeled x in this figure represents the values of S’ and T for a 32-bit integer. In this
case, ASN.1 requires about 0.75 times the buffer space of XDR. However, as noted above,
ASN.1 requires about 3.5 times the amount of assembiler instructions to decode the data.
The shaded area in Figure 5-1 is that domain in the S'-T" piane for which the representation
specified by standard i is more efficient, in space and time, than that specified by standard j.

We are unaware of any detailed metrics for comparing ASN.1 and XDR, nor are we aware
of any type of benchmark suite that would seek to compare these standards. We believe
that the existence of such work would help to establish quantitative results that application
systems need in order to complete a detailed performance estimate of the impact of using
either of the standards discussed here. A similar approach to that outlined above is easily
seen to apply to other data representation standards.
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Figure 5-1: A Sample Composite Metric
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5.3. Issues

5.3.1. Typing Considerations

A major difference between ASN.1 and XDR data representations is that the former carries
type information while the latter does not. The utility of type information is an issue. For
example, many systems are expecting data of a predefined type and to encode the type
information requires additional storage as well as processing time.

Neither XDR nor ASN.1 include any provision for fixed-point types. This was noted in the
examples considered, where it was necessary to encode fixed-point data in some other
form. In the case of the XDR specification of the Track Update Message, for example, the
position and velocity data were encoded as opaque data. The failure of a specification to
support a particular type has implications for the ability to automate the processing of appli-
cation data.
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5.3.2. Byte Ordering and Alignment

The XDR specification requires a big endian byte ordering. This torm is used in IBM and
Motorola class machines. However, the VAX family uses a little endian byte ordering.

The criteria for byte alignment may be important in system considerations. The XDR specifi-
cation is based on a four-byte wide representation, while the ASN.1 specification is of vari-
able length.

5.3.3. Use of Other Representations

This report has considered the use of the ASN.1 Spaecification and basic encoding rules and
the external data representation. Both of these are well known and widely used in distributed
systems. There are other systems that address similar issues as these which deserve con-
sideration. A notable case in point is the interface description language (IDL) developed by
Nestor et al [7]. Although originally intended for use in compiler technology (IDL is the de
facto intermediate representation for Diana, which is used in Ada compiler technology), IDL
applies to the problems considered in this report. In fact, IDL provides capabilities not found
in either of the systems considered.

5.3.4. Automated Tools

If one were to use a data specification and representation standard, such as ASN.1, XDR, or
IDL, it would clearly be advantageous to have automated tooling to support encode and
decode operations. Such a tool would allow a designer to specify the data, and the tool
would generate the encode and/or decode routine. There are such tools available for each
of the above three specifications.

5.3.5. Revisions to ASN.1

During the preparation of this report, we became aware of changes that are being proposed
to the basic encoding rules to ASN.1, ISO/IEC 8825 [3]. These include the following:

o A set of packed encoding rules (PER) that results in a more compressed en-
coding than ASN.1 basic encoding rules. For example an integer in the range
(100 ... 103) can be encoded in the PER using 2 bits. This is achieved by add-
ing an offset of 100 to the encoded value, thereby requiring less storage than
that for a basic encoding.

» A set of canonical and distinguishing encoding rules that are based on the basic
encoding rules. These encodings would require, for example, that a Boolean
be encoded as 1 if the value were TRUE and 0 if FALSE (recall the BER state
that a Boolean having the value TRUE can be encoded as any non-zero value).
The advantage of a canonical and distinguished encoding is that it standardizes
the encodings of certain elements.

e There is also some possibility that a set of light weight encoding rules (LWER)
will be standardized. These are intended to be faster to encode and decode
than the basic encoding, although the encodings may require more storage.

It is our understanding that the first two encodings listed above are draft international stan-
dards, while the LWER is under consideration.
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6. System Design Considerations

Although this report has focused on the data representation issues, the question of data
representation exists in a larger context. In particular, the use of data representation ser-
vices (such as encode and decode) represent a part of the execution time expended in sup-
port of end-to-end deadline processing. In the following, we examine some system con-
siderations related to this larger context.

6.1. Analysis

We will now present a simple analysis of the contribution to the end-to-end completion time
in the case of heterogeneous systems. For such systems, we assume that a data represen-
tation scheme, such as ASN.1 BER, is used. In the case of a peer-to-peer communication,
there are two contributions to the end-to-end completion time that must be considered,
namely

» The time for the sender to encode the data before message transmission.
» The time for the receiver to decode the received data.

Consider the case in which a message is transmitted at a periodic rate R times per second.
Assume that the message can contain n, values of data of type . For example, one could
delineate the set whose elements represent integer types, Boolean types, floating point
types, etc. To account for the encoding and decoding times we define

*A7p to be the time required to encode a data type i on processor p.
° x‘i’;f to be the time required to decode a data type i on processor p.

The inclusion of the subscript p in the above is to distinguish that the times to perform
encode and decode operations are processor-dependent.5

Based on the above, the contribution to the end-to-end completion time T is given by the
following expression:

T=RY n (5 +15)

It is possible to extend the development of the formalism in a natural manner. For example,
it can be developed for a specific message type or be extended to include worst-case times
for processing messages that are transmitted in a multicast manner. We will not explore
further development of the formalism here. Rather, our intent is to be able to illustrate the
impact of encode and decode operations in a heterogeneous context.

8There are also compiler and language dependencies, but they need not be included for purposes of the
current discussion.
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6.2. Example

We now consider an example of the formalism developed above. Consider the case of the
track update message, described in Section 2.3. We will assume as part of the transition to
an open systern architecture that the fixed-point data in the message are replaced by float-
ing point types, of which there are six (three for position data and three for velocity data).
Based on the results in Appendix C, we use the following values for floating point types:

enc _
= 74.0 psec
x;; = 365.0 jLsec

Approximately 83 percent of the total encode/decode time is spent in the decode operation.
Applying the above formula for the time required to encode and decocde a floating point type
Ty, we have

Tﬁ, = 6(74.0+365.0)R psec
=2.634R msec

The above result indicates that approximately 2.5 msec are required to encode and decode
the six floating point type values contained in the track update message. Of this, approxi-
mately 0.5 msec is required for the encode operation, and 2.0 msec for the decode opera-
tion. The results indicate an upper bound of about 380 messages per second not counting
other network effects (physical transmission rates, protocol layer processing) and also not
counting the time to encode and decode the other data types in the message. Furthermore,
when one examines the number of track update messages sent per second for each track, it
is apparent that the total processing time for encode and decode operations is
considerable.”

6.3. Alternatives

It is apparent that the results presented above and in Appendix C may cause concern to
some syste:n designers. Clearly, the amount of time required to perform data transfor-
mations because of concerns about heterogeneity can be substantial. The case in which
the communicating peers are components of a homogeneous system does not present the
problems of the heterogeneous case. We now briefly consider some of the issues from a
system development standpoint.

7For a network that can support a bandwidth of one megabit per second, this implies that the time spent in
encoding and decoding the floating point values in several hundred track messages is equal to the time it takes
to move one megabit of data. Note the throughput implications for system bandwidth.

30 CMU/SEI-93-TR-10




6.3.1. Role of the Interface Requirements Specification

As background, let us note that systems typically contain documentation describing the way
that data is exchanged among system components. Such documentation is often contained
in an interface requirements specification (IRS), or an interface design specification (IDS).
To examine issues of heterogeneity, it is interesting to examine the role of an IRS in a par-
ticular context. Toward this end, we define the following:

¢ An IRS is unconstrained if the specification of data elements is independent of
a particular hardware architecture.

e An IRS is constrained if the specification of data elements is dependent on a
particular hardware architecture.

For example, in an unconstrained form of the IRS, an element of a message may be speci-
fied as a floating point type. In contrast, in the case of a constrained IRS, the same data
type would be specified in terms of a particular representation, such as the IEEE format.
Since it hides implementation knowledge from the communicating systems, an uncon-
strained specification may be more suited to use in heterogeneous systems.8

6.3.2. Design Approaches

There are two basic approaches for dealing with the problems of heterogeneous communi-
cation and data representation. In the first case, one may want to apply a standard, such as
ASN.1 BER. One consideration is to optimize the procedures that perform the encode and
decode operations. As noted in Appendix C, Ada was used for purposes of readability. Itis
clear that one may be able to optimize the encode and decode operations by using as-
sembler language, for example. However, it is not clear how much improvement would
result from the use of assembler language.

The second approach is to develop application-specific protocols. For example, a message
can be defined in the following manner:
Message ::=
architecture_type;

seq_of {message_elements};
end Message;

where, for example,
architecture_type ::= {sparc, motorola68K, intel};

denotes the hardware architecture that is used to represent the message components and
the {message_elements} denotes the set of message elements, such as float, integer, and
enumerated. Note that the above specification is presented in an unconstrained form, since
the representation of floating point type is not defined.

8The fact that an IRS may also contain permitted ranges of values does not affect the notion of constrained
and unconstrained specifications.
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To illustrate the utility of application-specific protocols, consider the case in which applica-
tion A; sends messages to application A.. We assume that the hardware architecture of A, is
different from that of Ai' From the perspective of the sending application there are two
choices, namely

« Application A; encodes the data in its native (hardware) representation. This
eliminates the encoding time required if a standard, such as ASN.1 BER, were
used. When application Aj receives the message, it performs the decode
operations from architecture A, to its hardware architecture.

« Application A, encodes the data in the hardware architecture of application A;.
In this case, when the message is received by Aj there is essentially no time

required to decode, since that conversion was made before the transmission of
the message.?

The utility of application-specific protocols is based on knowledge of underlying hardware
architectures.'® This is in contrast with the use of ASN.1 BER and similar representation
schemes, which do not assume any knowledge of hardware architectures.

The preceding has only touched on several issues that must be addressed when one is
concerned with data transfer in heterogeneous systems.!! For those systems in which per-
formance considerations are critical, it is important to recognize the tradeoffs in the ap-
proaches to data representation.

9Note howsever, if a message is transmitted in a multicast manner where there are two receiving applications,
each of which has a different hardware architecture, further problems must be addressed.

'0This assumes that message elements are represented in native format for a particular hardware architecture
and theretore, fixed-point types would be precluded, for example.

Y'We mention that a hybrid approach is also possible that essentially encapsulates a constrained specification
in an opaque type.

32 CMU/SEI-93-TR-10




7. Summary

The ability of a real-time system to satisty end-to-end timing deadlines can be influenced by
many factors. One such factor is the encoding and decoding of data, by an application task,
which is then transferred to a component of a distributed system. To assure that deadlines
can be met, real-time systems require timely processing of application data.

Itis clear that the use of standards in the development of real-time distributed systems is an
important issue. This report has examined two such standards, namely the Abstract Syntax
Notation One (ASN.1) and the external data representation (XDR), in regard to data repre-
sentation. Each of these standards has unique characteristics that may make it applicable to
the real-time domain. Several issues are pointed out to help a designer determine the ap-
plicability of these and other standards to the issues related to data specification and repre-
sentation for the real-time distributed domain. The BNF for ASN.1 and XDR, as well as an
Ada implementation of ASN.1 BER encode anc! decode routines for floating point numbers,
are included in Appendix C.
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Appendix A: ASN.1 BNF

<assignment> ::= <type_assignment> <CR> | <value_assignment> <CR>

<external_type reference> ::= <module_ reference> '.’
<type_reference>

<module_reference> ::= <identifier>
<type_reference> ::= <identifier>

<external_ value_reference> ::= <module_reference> ’'.’
<value_reference>

<value_reference> ::= <identifier>
<defined type> ::= <external_type_reference> | <identifier>

<de£ined_valu.> ::= <external value_reference> |
<value_reference>

<type_assignment> ::= <identifier> '::=' <type>
<value_assignment> ::= <identifier> <type> ’'::=' <value>
<type> ::= <builtin_type> | <defined type> | <subtype>

<builtin_type> ::= <boolean_type> | <integex_type> |
<bitstring_ type> | <octet_string type> | <null_type> |
<sequence_type> | <sequenceof type> |
<set_type> | <setof_type> | <choice_type> |
<selection_type> |<tagged type> | <any type> |
<object_identifier_type> | <character_ string type> |
<useful_ type> | <enumerated_type> | <real_ type>

<named_type> ::= <identifier> <type> | <type> | <selection_type>
<value> ::= <builtin value> | <defined_value>

<builtin_value> ::= <boolean value> | <integer_ value> |
<bitst::l.ng value> |
<octet_string_value> | <null_value> | <sequence_value> |
<sequenceof_ value> | <set_value> | <setof_value> |
<choice_value> | <scloct:|.on value> | <tagged value> |
<any_° value> | <object_. identifie: value> |
<character_string_value> | <enume:atad_va1ue> |
<real_value>

<named value> ::= <identifier> <value> | <value>

<boolean_type> ::= ' BOOLEAN '
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<boolean value> ::= ' TRUE ' | ' FALSE '

<integer_type> ::= ' INTEGER ' |
! INTEGER {’ <named number_ list> '}’

<named_number_list> ::= <named number> |
<named_number_list>’',’ <named number>

<named_numbezr> ::= <identifier> ' (' <signed_number> ‘)’
<identifier> ' (' <defined value> ')’

<enumerated type> ::= ' ENUMERATED {’ <enumeration> '}’

<enumeration> ::= <named number> |
<enumeration> ’,’ <named numbex>

<enumerated value> :@:= <identifier>

<real_type> ::= ' REAL '

<real_ value> ::= <numeric_ real_ value> | <special_real value>

<numeric_real_ value> ::= ‘{’ <mantissa> ’',’ <base> ’,’
<exponent> '}’ | 0

<mantissa> ::= <signed_number>
<base> ::= 2 | 10

<exponent> ::= <signed number>

<special real value> ::= ’' PLUS-INFINITY ‘' | ’' MINUS-INFINITY '

<bitstring type> ::= ' BIT STRING ' |
* BIT STRING {’ <named bit_list> '}’

<named bit_list> ::= <named bit> |
<named bit_list> ’,’ <named bit>

<named bit> ::= <identifier> ’ ('’ <numbex> ')’
<identifier> ' (' <defined value> ')’

<bitstring value> ::= <bstring> | <hstring> |
'{’ <identifier_list> '}’ | <empty list>

<empty list> ::= ’'({}’

<identifier list> ::= <identifier> |

<identifier_list>’,’ <identifier>

<octet_ string type> ::= ' OCTET STRING '
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<octet_string value> ::= <bstring> | <hstring>
<null_ type> ::= NULL
<null_value> ::= NULL

<sequence_type> ::= ' SEQUENCE {’' <element_type_list> '}’ |
! SEQUENCE ()}’

<element_type_list> ::= <element_type> |
<element_type_list> ’,’ <element_ type>

<element_type> ::= <named type> |
<named type> ' OPTIONAL '
<named type> ' DEFAULT ' <value>
! COMPONENTS OF ' <type>
<sequence_value> ::= ’{’' <element_value_list> '}’ | <empty list>

<element_value_list> ::= <named value> |
<element_value_list> ’,’ <named_value>

<sequenceof type> ::= ' SEQUENCE OF ' <type> | ' SEQUENCE '
<sequenceof_value> ::= '{’ <value_list> '}’ | <empty list>
<value_list> ::= <value> | <value_list> ’,’ <value>
<set_type> ::= ' SET (' <element_type list> '}’ | ' SET {} '
<set_value> ::= '{’ <element_value_list> '}’ | <empty_list>
<setof_type> ::= ’ SET OF ' <type> | ' SET '

<setof_value> ::= '({’ <value_list> ‘}’ | <empty list>
<choice_type> ::= ' CHOICE {’' <alternative_type_list> '}’

<alternative_type_list> ::= <named_type> |
<alternative_type_list> ’,’ <named type>

<choice_value> ::= <named value>
<selection_type> ::= <identifier> '<’' <type>
<selection_value> ::= <named value>

<tagged type> ::= <tag> <type> |
<tag> ' IMPLICIT ’ <type>
<tag> ' EXPLICIT ' <type>
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<tag> ::m ’'[’ <class> <class_numbex> ']’

<class> ::= ' UNIVERSAL ‘' | ' APPLICATION ' |
! PRIVATE ' | EPSILOM

<class_number> ::= <number> | <defined value>
<tagged value> ::= <value>

<any type> ::= ' ANY ' |
! ANY DEFINED BY ’' <identifier>

<any value> ::= <type> <value>
<object_identifiex_type> ::= ' OBJECT IDENTIFIER '

<object_identifiex value> ::= '{’ <obj_id_component list> '}’ |
'{’' <defined_value> <obj_id component_ list> '}’

<obj_id component_list> ::= <obj_id_component> |
<obj_id _component> <obj_id component_list>

<obj_id_component> ::= <name_form> | <number_form> |
<name_and number_ form>

<name_form> ::= <identifier>

<number_form> ::= <number> | <defined value>

<name_and number_ form> ::= <identifier> ' (’ <number_ form> ')’

<character_string type> ::= 'RumericString’ | ‘PrintableString’ |
'TeletexString’ | ‘VisibleString’ | 'IASString’ |
'‘GraphicString’ | ’'GeneralString’

<character_string value> ::= <cstring>

<useful type> ::= <identifier>

<integer value> ::= <signed number> | <identifier>

=~ SUBTYPE DECLARATIONS

<subtype> ::= <parent_type> <subtype_spec> |
‘! SET ' <size_constraint> ' OF ’' <type> |
! SEQUENCE ' <size_constraint> ’' OF ' <type>

<parent_type> ::= <type>
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<subtype_spec> ::= ' (’ <subtype_clause> ')’
<subtype_clause> ::= <subtype_value_set> <subtype_value_set_list>

<subtype_value_set_list> ::= ’'|’ <subtype_value_set>
<subtype_value_set_list> | EPSILON

<subtype_value_set> ::= <single_value> |
<contained_subtype> | <value_range> |
<permitted_alphabet> | <size_constraint> |
<inner_type_constraints>
<single_value> ::= <value>
<contained subtype> ::= ' INCLUDES ' <type>
<value_range> ::= <lower_endpoint> ’ .. ’ <upper_endpoint>
<lower_endpoint> ::= <lower_end value> | <lower_end value> '~ <’
<upper_endpoint> ::= <upper_end value> | ‘<’ <upper_end value>
<lower_end value> ::= <value> | ' MIN '’
<upper_end value> ::= <value> | ' MAX '
<size_constraint> ::= ' SIZE ' <subtype_spec>
<permitted_alphabet> ::= ’ FROM ’' <subtype_spec>
<inner_type_constraints> ::=
! WITH COMPONENT ' <single_type_constraint> |
’ WITE COMPONENTS ' <multiple_type_constraint>
<single_type_constraint> ::= <subtype_spec>

<multiple_ type_constraint> ::= <full specification> |
<partial_ specification>

<full_specification> ::= ’{’ <type_constraints> '}’
<partial_specification> ::= '{ ... , ’ <type_constraints> '}’

<type_constraints> ::= <named constraint> |
<named constraint> ’,’ <type_constraints>

<named_constraint> ::= <identifier> <constraint> | <constraint>

<constraint> ::= <value_constraint> <presence_constraint>
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<value_constraint> ::= <subtype_spec> | EPSILON

<presence_constraint> ::= ' PRESENT ' | ' ABSENT ’ |
! OPTIOMAL '| EPSILON

<signed number> ::= <number> | ‘-’ <number>
<identifier> ::= <uppercase_letter> <more_characters>
<uppercase_letter> ::= <RANGE: 'A’' .. 'Z’' >

<more_characters> ::= <letter> | EPSILON

<letter> ::= <RANGE: 'a’ .. 'z2'> | <uppercase_letter> | '-’ |

<digit>

<digit> ::= 0 | 11213 )4]15]16)17)8)])59
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Appendix B: XDR BNF

<XDR_Spec> ::= <XDR Defn> <CR> <more_XDR Defn> <CR>
<XDR Defn> ::= <type_defn> | <constant_defn>
<more_XDR defn> ::= <xdr_defn> | EPSILON

<type_defn> ::= ‘typedef ' <decl> ';’
‘enum '  <identifier> <enum body> ;' |
‘struct ‘' <identifier> <struct_body> ’';’ |
‘union ‘' <identifier> <union body> ‘:’

<decl> ::= <unit_decl> <identifier> |
<fixed length unit_array> |
<variable_length_unit_array> |
<opaque_spec> |
<string_spec> |
<void_spec>

<unit_decl> ::= <integer_decl>
<float_decl>
<boolean_decl>
<enumerated decl>
<structure_decl>
<union_spec>
<identifier>

<integer_decl> ::= <integer> | <unsigned integer> |
<hypezr_integer> | <unsigned_hyper_ integer>

<integer> ::= ’int '

<unsigned_integer> ::= ’'unsigned int ’
<hyper_integer> ::= 'hyper '

<unsigned_hyper_ integer> ::= ’'unsigned hyper '’

<float_decl> ::= <single_f£float_decl> |
<double_f£float_decl>

<single_float_decl> ::= ’float '
<double_float_decl> ::= ’'double ’
<boolean_decl> ::= 'bool '
<enumerated decl> ::= ‘enum ' <enum body>

<enum body> ::= ’'{’ <enum clause>
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<othex_enum clause> '}’
<enum clause> ::= <identifier> ' = ' <integer_constant>
<other_enum clause> ::= ', '/ <enum clause> | EPSILON
<structure_decl> ::= <CR> ’'struct ’ <struct_body>

<struct_body> ::= ' {’ <struct_clause>
<other_struct_clause> ' }’

<struct_clause> ::= <decl> ’;’
<other_struct_clause> ::= <struct_clause> | EPSILON
<union_spec> ::= ’‘union ’' <union_body>
<union_body> ::= ' switch (' <identifier> )’
’{ ' <union_clause> <more_union_clause>
<default_clause> '}’
<union_clause> ::= <CR> ‘case ' <length> ' : ' <decl> ’;’
<more_union_clause> ::= <union_clause> | EPSILON

<default_clause> ::= ‘default : ' <decl> ’';’ | EPSILON

<fixed_length_unit_array> ::= <unit_decl> <identifier>
<fixed_length_spec>

<fixed length spec> ::= ' [’ <length> ']’
<length> ::= <positive_integer> | <identifier>

<variable_ length unit_array> ::= <unit_decl> <identifier>
<variable length_ spec>

<variable_length _spec> ::=’ <’ <optional_length> ’>’
<optional length> ::= <length> | EPSILON

<opaque_spec> ::= <fixed length_opaque_spec> |
<variable_length_opaque_spec>

<fixed length_opaque_spec> ::= 'opaque ’' <identifier>
<fixed_length_spec>

<variable_length _opaque_spec> ::= ’‘opaque ' <identifier>
<variable length_ spec>

<string_spec> ::= ’‘string ' <identifier>
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<variable_length_spec>
<void _spec> ::= ’‘void’

<constant_defn> ::= ’‘const ' <identifiex> ' = '
<integer_constant> ';’

<integer_constant> ::= <RANGE: -2147483647 .. 2147483647>
<positive_integer> ::= <RANGE: 1 .. 2147483647>
<identifier> ::= <letter> <other_character>
<letter> ::= <RANGE: ‘a’ .. 'z2'> | <RANGE: 'A’ .. 'Z'>
<other_character> ::= <letter> | <digit> | ’_’

<digit> ::= 0| 1 | 2| 3| 4|15]16]7|8]9
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Appendix C: ASN.1 BER Encode and Decode Routines
in Ada

Performance is a critical issue in real-time systems. As shown earlier in this report, ASN.1 is
a very general and powerful technique for communication in a heterogeneous distributed
system. The purpose of this appendix is to explore, by means of an example, the computa-
tional cost of the generality of the ASN.1 BER. We hope to illustrate exactly what can be
involved in the eiicoding to and the decoding from an ASN.1 representation, using the BER.

We selected the ASN.1 primitive type real as an example, as it appears to be the most
complex of the ASN.1 primitive types. We further chose to impiement the encode and
decode routines in Ada. While more efficient implementations might well be possible in
another language, such as assembler, we are more interested in illustrating the issues in-
herent in the use of ASN.1. As Ada is probably more widely understood than Sparc2 as-
sembler language, we feel that Ada is the more appropriate choice. Further, we make no
claims concemning the optimality of our code. We did not explore alternative Ada implemen-
tations. It is therefore quite possible that more efficient Ada implementations of the encode
and decode routines are possible. Again, our purpose is to obtain a general idea of the pos-
sible computational costs of the generality of the ASN.1 BER.

Our implementation (included in this appendix) consists of a main program which we call the
driver. To decode, the driver examines an ASN.1 encoding, determines the type and overall
length of a component, and then calls the appropriate decode routine. To encode, the driver
determines the type of the object to encode, and then calls the appropriate encode routine.
Our driver, encode, and decode routines are implemented on a SPARCstation 2 using the
self-hosted Verdix Ada compiler (VADS 6.03d).

As our purpose is to identify performance concerns inherent in the use of ASN.1 BER, we
have accepted certain limitations on our implementation. For example, the encode and
decode routines are implemented only for the short_float type (32 bit IEEE-754 float), and
do not consider the cases of NaN (not a number), or plus or minus infinity. Only the ASN.1
binary encoding for reals has been implemented (a decimal/character encoding also exists).

The major criterion for the success of our encode and decode routines is the ability to en-
code a float, decode that encoding, and then verify that the resulting float is equal to the
original float. This is done using both Ada float_io and formatted bit displays of the encod-
ings and floats (see Figure C-1).

Real Float_IO

—> Float_IO
Number = |(Read) [—%| Encode [—#| Decode %

Figure C-1: Testing of Encode and Decode
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There are several limitations of our testing of the encode and decode routines. We have
only considered "reasonable” encodings of floats; that is, encodings that use the minimum
number of octets to encode the exponent and mantissa of the represented real number.
Another limitation of our testing is that we have not tested the encoding and decoding of
numbers with bases other than two, although the routines are written to handle those cases.
Finally, the encode and decode routines have not been tested across different machines or
between different ASN.1 users.

The encode and decode procedures were compiled using three different compilers: the self
hosted Verdix 6.03d compiler, the Vax Ada V2.3-3 compiler, and the XD Ada V1.2-23 com-
piler. The resultant code sizes for the encode and decode routines are shown in Table C-1.
It is apparent that the assembler code generated is quite large. In each case, the compi-
lation was performed with optimization of time as opposed to space.

Function Vendor A Vendor B Vendor C
Encode 130 215 76
Decode 295 449 236

Table C-1: Generated Code Size for Encode/Decode Operations

There are several points to be made about the results presented in Table C-1.

e The results do not indicate of the relative merit of the compilers tested. The
compilers represent different target architectures; for example the Sparc is a
RISC machine, while the others are CISC machines.

» The generated code sizes do not account for the driver code that determines
which routine should be called. Such generated code is expected to consist of
less than 15 instructions.

e The generated code sizes do not include the elaboration code. Based on the
number and types of focal procedures and declarations, we expect that the
elaboration code size for the decode routine would be at least three times
greater than that of the encode routine.

e The decode procedure contains a statement that generates a call into the run-
time library for each compiler tested. The call is for computing an integer base
to an integer exponent.12 An estimate of the additional assembler code for this
operation is roughly 50 instructions, increasing the assembler code for the
decode operation even more. No similar runtime calls were generated for the
encode operation.

In view of the preceding, it is apparent that the results presented in Table C-1 underestimate
the actual generated code size. What we consider interesting is the fact that the code to
perform the decode operation is roughly a factor of three times larger than the code to per-
form the encode operation.

122 ** (8 * Exponent_Size - 1).
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As an additional experiment, we compiled our routines using the Verdix SUN-3 to MC68020,
Version 6.0 cross compiler. We then tested the code on a 68020 processor that was
monitored by a Tektronix DAS9200 logic analyzer. For the special case of 0.0, both the
encode and decode routines ran in 26 microseconds. The results for all other tested real
numbers are summarized in Table C-2.

Function Execution Time
Encode 74 psec
Decode 365 usec

Table C-2: Measured Execution Times for Encode/Decode Operations

In any system, there are tradeoffs between generality and performance. Frequently, the
more general a program is, the more computation it must perform. In our example, it ap-
pears that one pays a high price for the generality of ASN.1. These figures may well be of
concern in a real-time system. Sensor data, for example, frequently consists of muitiple real
numbers. The receiver of such data would pay the decode overhead for each of the reals
sent.

Note that part of the complexity of our decode routine stems from the fact that the ASN.1
real representation is not normalized. That is, one cannot determine, based solely on the
number of octets of exponent and mantissa in the ASN.1 representation, whether a real is
representable or not on a given machine. Thus the mantissa must be processed, and then
the exponent computed, before it can be determined if the encoded real can be represented.
For example, 2.0 can be encoded with a mantissa of 1 and exponent of 1, or a mantissa of
10 (binary) and an exponent of -1, or a mantissa of 100 (binary) and an exponent of -2, etc.
There is no limit on the number of octets that can be used to represent the mantissa. Hence,
assuming a base of 2 and a scaling factor of 0, any negative exponent that can be
represented in an ASN.1 BER real representation can be a valid exponent for the number
2.0. Since ASN.1 BER allows up to 255 octets of exponent, this amounts to roughly 2 **
2039 different valid representations for 2.0. Note that this is not a problem for XDR, as the
XDR floating point representation is normalized.

Another problem we encountered is that ASN.1 does not provide an explicit indication of
precision for reals. As demonstrated earlier, there are a number of different representations
for each expressible real value. The ISO/IEC ASN.1 BER standard [3] states that the selec-
tion of a particular representation is at “... a sender’s option, and can be used as a broad
indication of precision." There is, however, no way for the receiver to know if the sender is
using a particular representation as an indication of precision. This means that the receiver
(the decode routine) must have some understanding of the sender (the encode routine) to
properly interpret real data. This would require a protocol, which is beyond the scope of
ASN.1. Given the generality of ASN.1, we find this odd.

As an aside on the use of Ada, one might wonder if the use of AdagX might not improve the
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encode and decode routines. Since Ada9X is not currently available, it is not possible to
obtain instruction counts. AdadX will provide certain attribute functions and procedures for
floats, such as compose and decompose. While compose and decompose could make the
source code more readable, it is not clear that the generated object code would be more
efficient than that generated by Ada83.
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with system;
with unchecked conversion;

package Target_Dependent_Definitions is
-- Exceptions

ASNl1_Error : exception;
~- raised when the ASN.1l encoding cannot be decoded

-- Bit, Byte, and Word Declarations

subtype Bit is integer range 0..1;
type Byte is range 0..16§FF§;
for Byte’size use system.storage_unit’

Word : constant := 4;

~- The following declarations of bit arrays, byte arrays, and
-~ "gpecial" integers are necessary as the Encode and Dacode
~- routines need to examine octets, which sometimes need to be
-- treated as bits, while other times must be treated as

-- integers.

-~ Declarations of arrays of Bit

type Bit_Array is array (0..7) of Bit;
for Bit_Array’size use system.storage_unit;
pragma pack (Bit_Array):;

type Word Bit_ Array is array (0..31) of Bit:
for Woxd Bit _Array’size use 4*system.storage unit;
pragma pack (Word_Bit Array):

-- Declarations of arrays of Byte |

type Two_Byte Array is arzay (0..1) of Byte;
for Two_Byte_Array’size use 2*system.storage_unit;
pragma pack (Two_Byte _Array); |

type Four_Byte_Array is arzxay (0..3) of Byte;
for Four Byte Array’size use 4*system. storage unit;
pragma pack (Four_ Byte Array):;

-- Declarations of integers of "special" lengths for conversion
-- to and from bit and byte arrays

type Two_Byte Integer is new integer range 0..65535;
for Two_Byte Integer’size use 2*system.storage_unit;
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type Four_Byte_Integer is new integer range 0..system.max int;
for Four_Byte_Integexr’size use 4*system.storage_unit;

~-- Type Declarations for ASN.l BER Real (Binary Encoding)

type Encoding Header is

recoxd
Code : integer range 0..1 := 1;
Sign : integer range 0..1;
Base : integer range 0..3 := 0;
Scaling Factor : integer range 0..3 := 0;
Length : integer range 0..3 := 1;

end recoxd;

for Encoding Header use

record at mod 2;
Code at 0*Woxd range 0 .. O;
Sign at O*Woxrd range 1 .. 1;
Base at O*Woxd range 2 .. 3;
Scaling Factor at 0*Word range 4 .. 5;
Length at O*Woxd range 6 .. 7;

end record;

for Encoding Header’SIZE use system.storage_unit;

type Contents_Array is array (natural range <>) of Byte;

type Encoding (n : natural) is
record
Total Length
Header
case n is
when 0 =>
null;
when others =>
Contents : Contents_Array (1..n):;
end case;
end recorxd;
pragma pack (Encoding):

integer range 0..255;
Encoding Header:

type ASNl1l_Encoding is access Encoding:;
-- Type Declarations for IEEE floating points

Type IEEE Float is

recoxd
Sign : integer range 0..1;
Exponent : integer range 0..255;
Mantissa : integer range 0..8388607;

end recozxd;
pragma pack (IEEE Float):

52
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for IEER Float use
zecoxd at mod 2;

8ign at O*Woxd zange 0 ..

Exponent at O*Woxrd zange 1 ..

Mantissa at 0*Woxd range 9 ..
end recoxd;

0
8
3

.
’
.
’
1;

-- Unchecked Conversions necessary for Encode and Decode

function To_Two_Byte Axray is
new unchecked conversion (SOURCE
TARGET

function To_Four Byte Array is
new unchecked_conversion (SOURCE
TARGET

function To_Four_Byte_ Integer is
new unchecked_conversion (SOURCE
TARGET

function To_Bit_ Array is
new unchecked conversion (SOURCE
TARGET

function To_Bit_Array is
new unchecked conversion (SOURCE
TARGET

function To_Bit_Array is
new unchecked conversion (SOURCE
TARGET

function To_Shoxt_Float is
new unchecked _conversion (SOURCE
TARGET

function To_IEEE is
new unchecked conversion (SOURCE
TARGET

=>
=>

=>

=>

=>

=>
=>

=>
=>

=>
=>

=>
=>

-~ Global Declarations necessary for Encode

Two_Byte_Integer,
Two_Byte_Array):

Four_ Byte_ Integer,
Four_ Byte_Axzay):

Four Byte_Array,
Four_Byte_Integer):

Byte,

Bit_Array):
Integex,

Woxrd Bit_Array):

Encoding_ Header,
Bit_Array):

Word Bit_Arxray,
Short ,_Float);

Short_rFloat,
IEEE Float);

and Decods routines

Zero_Float_Encoding : ASN1_Encoding

:= new Encoding (n => 0);
Single_Float_Encoding : ASN1_Encoding

:= new Encoding (n => 5);
Zero_Float Encoding Length : constant := 1;
s:l.nqlo Float _Encoding Length : constant := §;
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-- binary ASM.1 BER encoding
Single_Float_Code

-- base 2 numbex
Single_Float_Base

Single_Yloat_Scaling Factor

~- 2 octets of exponent
Single_Float_Length

constant

constant

constant

constant

-- Constants for the Encode routine

-- For conversion from an 8 bit two’s complement to a 16 bit
-- two’s complement number, with a 23 bit shift included. See

-- Notes section in Encode.

Conversion_Constant

constant

= 32617;

-- Foxr xestoring the implied leading one missing from the IEKEE

-- normalized float.

Mantissa_Implied 1

constant

-- Constants for the Decode routine

-- Implementation limit on maximum length

-- will be accepted.

Maximum Encoding_ Length

constant :

-- Implementation limit on maximum aumber

-- accepted.
Maximum Exponent_ Octets
-- Number of bits in an octet.

Bits_In Octet

constant

constant

2 =% 23;

an encoding which

10;

octets which will be

8;

-- Bit positions needed to extract the exponent mantissa from an

~- encoding to a Short_Float.

BitO
Bitl
Bit8
Bit9
Bit24
Bit31

end Target Dependent_Definitions;

constant
constant
constant
constant
constant
constant

WhooHo
|l

s We e v

’

’
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with Target_ Dependent Definitioms;
use Target Dependent_ Definitions:

procedure Encode (Decoded Float : Shozt_Float:

Encoded Float : out ASN1_Encoding) is

~- Encodes an 8Single Float in an ASN.l1l representation using BER

-~ Notes:

1)
2)

3)

4)

5)
6)

7

8)

9)

10)

The Shoxt_Float representation is normalized.
0.0 is a special case. The encoding contains no contents
octets. Only the sign bit in the header has meaning.
The Short_ Float exponent is 8 bits in two’s complement
notation. It is a "bias" representation. That is:
Short_Float exponent = actual exponent + bias,
where, for the 8 bit representation, bias = 127,
The Short_Float mantissa is 23 bits of binary fraction.
The mantissa of the real number represented by the
Short_Float is 1 greater than the Short_Float’s mantissa.
That is, if the Short_Float stores a mantissa of :
.2345
the mantissa of the real number represented by that
Short_Float is :
1.2345
The ASN.l exponent is represented in an integral number of
octets as a two’'s complement integer.
The ASN.l1 mantissa is represented in an integral number of
octets as a binary integer (with all of its digits).
Conversion of the Short_Float to the ASN.l1l encoded
representation conceptually involves the following:
a) the conversion of the Short_Float’s mantissa to a binary
integer with its leading one restored. (i.e., add 1 and
multiply by 2 ** 23)

b) the conversion of the 8 bit two’s complement

Short_Float’'s exponent to the equivalent 16 bit two's
complement integer (necessary since the mantissa has
been multiplied by 2 ** 23, the exponent must be
decreased by 23, which could overflow in 8 bits.
In practice, going from a two’s complement exponent in 8
bits to a two’s complement exponent in 16 bits requires a
change in bias from 127 to 32767 (i.e., add 32640).
Furthex the conversion of the mantissa from the IEEE
normalized fraction of 23 bits to the ASN.l mantissa as a
binary integer requires an adjustment of -23. Hence the
constant of 32617 (Conversion_Constant).
The 23 bit Short_Float mantissa is converted to a 32 bit
(rather than a 24 bit) representation due to alignment
problems on the Sparc2.
The only field in the encoding header that depends on
the particular Short_Float being encoded is the sign. We
are always using the ASN.1 binary encoding (Code = 1), a
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-- base 2 number (Base = 0), a scaling factor of 0
- (Scaling Factor = 0), and an exponent length of 2 octets

-- (Length = 1).
Single Float : IEEE Float;
Temp_ Exp : Two_Byte_Integer := 0;
Temp_Two : Two_Byte_Array;
Temp Mantissa : Four_ Byte_lInteger;
Temp Four : Four_Byte_Axzray’
begin

Single Float := To_IEEE (Decoded Float):;

if Decoded Float = 0.0 then
Zerxo !'J.oat _Encoding.Header.Sign :@= Single_Float.Sign;
Encoded |_Float := Zero_Float_Encoding:
return;

end if;

-- Move the 8 bit exponent to a two byte integer representation
Temp_ Exp := Two_Byte_Integer (Single_Float.Exponent):

-- Adjust for the conversion from an 8 bit two’s complement to a
-- 16 bit two’'s complemsnt, and also for the 23 bit shift

Temp_ Exp := Temp Exp + Conversion_Constant:;
-- Set the fields in the encoding header

Single_Float_Encoding.Header.Code
:= Single_Float_Code;

Single_Float_Encoding.Header.Sign
:= Single Float.Sign;

Single_Float_Encoding.Header.Base
:= Single_Float_Base:;

Single_Float_Encoding.Header.Scaling Factor
:= Single_Float_Scaling Factor;

Single_Float_Encoding.Header.Length
:= Single_Float_Length;

-- Store the converted exponent

Temp Two := To Two_Byte Array (Temp Exp):;
Single_Float xncoding Contents (1) := Temp Two(0):
Single_Float_ Encoding.Contents(2) := Temp Two(l)’
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~- Convert the mantissa from the 23 bit normalized fraction to a
-- binary integer

Temp_Mantissa := Four_ Byte_Integer (Single_Float.Mantissa):
-~ Add 1 to the mantissa
if Single_Float.Exponent > 0 then
Temp Mantissa := Temp Mantissa + Mantissa_ Implied 1:
end if;
~-- Store the converted mantissa
Temp Four := To_Four_ Byte Array (Temp Mantissa):’
for 41 in 1 .. 3 loop
Single_Float_Encoding.Contents (i+2) := Temp Four (i)’
end loop;
Encoded Float := Single_Float_Encoding:;

end Encode;
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with Target Dependent Definitions:
use Target Dependent Definitions’

procedure Decode (Encoded Float : ASN1_Encoding;

Docod.d Float : out Short_Float) is

-- Decode an ASN.1 REAL representation (using BER) to a Float

-- Notes:

- 1)

- 2

- 3)
- 4)

- 5)

-~ 6)

-7
-~ 8)

-~ 9)

0.0 is a special case, represented in the encoding by zero
octets of contents.

The ASN.1l representation for reals is not normalized. The
encoder of a real may use up to 255 octets to represent
the exponent, and an unlimited number of octets to
represent the mantissa. Hence it is not possible to deduce
whether an encoded real is representable or not on a given
machine without £irst decoding it. For example, 2.0 can be
encoded with a mantissa of 1 and exponent of 1, ozr a

‘mantissa of 10 (binary) and an exponent of -1, or a

mantissa of 100 (binary) and an exponent of -2, etc.

For our purposes we have limited the total encoding sizes
to 10 octets, and the maximum exponent size to 4.

ASN.1 allows for base 2 (Header.Base = (), base 8
(Header.Base = 1), and base 16 (Headex.Base = 2) numbers.
ASN.1l encodes the exponent in a series of octets that
follow the header. The Length field in the header
specifies the number of octets in that encoding. If
Header.length is 0, there is 1 octet of exponent; if 1,
there are 2 octets of exponent; if 2, there are 3 octets
of exponent; if 3, the first octet contains the number of
following octets that contain the exponent (up to 255
octets). Any remaining octets contain the mantissa.

The ASN.1l exponent is stored as a two’s complement binary
numbexr.

The ASN.l mantissa is stored as a binary integer.

Since there is no restriction on the number of octets in
the mantissa, one must search the stored mantissa from
high-oxder bit to low-order bit to find the first one bit
(i.e., drop the leading zeros). Since the Sparc2
Short_Float is normalized, that first bit will not be
stored in the decoded float. The 23 bits following the
first one bit will be moved into the mantissa field of the
decoded float. Since the ASN.l1l representation does not
contain an explicit indication of precision (i.e., the
number of significant digits in the mantissa), the Decode
routine can do no more.

The position of the first one bit in the mantissa together
with the number of octets that contain the mantissa
indicate the size of the real number being represented.
Since the decoded float is normalized, the exponent to be
stored in the decoded float must be adjusted accordingly.
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-~ 10) Based on note 8), notice that the encoded float cannot be

- determined to be unrepresentable on the target machine
- (the Sparc2 in this case) until after the calculation of
- the encoded float’'s exponent.

Base : integer = 1;

Exponent_Size : integer = 0;

Temp_ Exp : Four_Byte_Integer := 0;

Temp_Four : Four_Byte_ Array := (others => 16#0# )

Index : natural := 0;

Bit_Index : natural := 0;

Temp Bits : Bit_Array := (others => 0);

Temp_Float : Word Bit_Array := (others => 0);

First_One_Bit : integex = 0;

Actual Exp : integer = 0;

Temp Bit_ Array : Word Bit_Array := (others => 0);

function Test_ First_ Bit (Byte_ To_Test : Byte;
Bit_Value : Bit)
return boolean is
Temp Bit_Array : Bit_Array:
begin
Temp Bit_Array := To_Bit_Array (Byte To Test);
return (Temp Bit_Array (Bit0) = Bit_Value):;
end Test First Bit:

begin
Temp_Float (0) := Encoded Float.Header.Sign;

if Encoded_Float.n = 0 then
Decoded Float := To_Short_Float (Temp Float):
retuzn;

end if;

if Encoded Float.Total Length > Maximum Encoding Length then
raise ASNl Error;
end if;

case Encoded_Float.Header.Base is
when 0 =>
Base := 1;
when 1 =>
Base := 3;
when 2 =>
Base := 4;
when 3 =>
raise ASN1l Error;
end case;
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-- Extract the exponent octets from the encoded float

Temp_Four := (othexs => 16#0#);
if Encoded_Float.Header.length < 3 then
Exponent_Size := Encoded Float.Header.length + 1;
for 1 in 1 .. Exponent_Size loop
Temp Four (i+3-Exponent_Size) := Encoded Float.Contents (i):
end loop:
else
Exponent_Size := integer (Encoded_Float.Contents(l)):;
if Exponent_Size > Maximum Exponent_Octets then
raise ASN1l_Error;
end if;
if Encoded Float.Contents(2) = 16#0# then
-~ test first bit of next octet. if is 0, error
if Test_First Bit (Encoded_Float.Contents(2), 0) then
raise ASN1 Errox;
end if;
elsif Encoded Float.Contents(2) = 16#FF# then
-~ tast first bit of next octet. if is 1, error
if Test_First_Bit (Encoded Float.Contents(2), 1) then
raise ASN1_Error;
end if;
end if;
for i in 1 .. Exponent_Size loop
Temp_Four (i+3-Exponent_Size)
:= Encoded Float.Contents (1+i);
end loop:
end if;

Temp Exp := To_Four Byte Integer (Temp Four):
-- Find first word in mantissa which contains a non_zero bit.

index := Exponent_ Size + 1;
while not (index > Encoded Float.n) loop
if Encoded _Float.Contents(index) = 16#0# then
index := index + 1;
else
exit;
end if;
end loop:;

~- Find the first one bit in the first non_zero byte of the ASN.1l
- mantissa representation.

~- Determine its position in the mantissa (i.e., compute

-- First_One_Bit).

-- Slice the 23 bits following the first one bit into the decoded
- float’s mantissa field.

if index > Encoded Float.n then
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-- have a mantissa of 0
null;
else
Temp_Bits := To_Bit_Array (Encodecd_Float.Contents(Index)):;
Bit_Index := 0;
while Temp Bits (Bit_Index) = 0 loop
Bit_Index := Bit_Index + 1;
end loop;

First_One_Bit := Bitc_In Octet * (Encoded Float.n - Index)
+ 7 - Bit_Index;

Bit_Index := Bit_Index + 1;

for i in Bit9 .. Bit31 loop
if Bit_Index > 7 then
Index := Index + 1;
Temp_ Bits
:= To_Bit Array (Encoded Float.Contents(Index)):
Bit_Index := 0;
end if;
Temp_Float (i) := Temp Bits (Bit_Index);
Bit_Index := Bit_Index + 1;
end loop;
end if;

-- Compute the actual value of the exponent

Actual Exp := Base * integer (Temp_ Exp)
+ Encoded Float.Header.Scaling Factor
+ First_One_Bit
- (Base * (2 **(8 * Exponent_Size - 1) - 1)):

-- If the actual value of the exponent is representable on the
~- target machine (in this case, the Sparc2), convert the value
== to two’'s complement and store it in the decoded float.

if Actual Exp > Short_Float’Machine Emax or

Actual_Exp < Short_Float’Machine_Emin then

raise ASNl1 _Error;
else

Actual_Exp := Actual_Exp + 127;

Temp_Bit_Array := To_Bit_Array (Actual_Exp):

Temp_Float (Bitl..Bit8) := Temp Bit_Array (Bit24..Bit31);
end if;

Decoded Float := To_Short_Float (Temp Float):;

end Decode;
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with Decode;

with Encods;

with Target Dependent Definitions’
use Target Dependent Definitions’

with text_io;

with unchecked_conversion;

procedure Driver is
~- Declarxations
begin

Initialize the Encoding areas
-— Get the float to test

-- Encode the float to test

-- Dump Encoding

-- Decode the created encoding

—- Display the original float

Display the resulting £loat

end Driver;
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